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Quantifying and Visualizing Uncertainty for Source Localisation in 
Electrocardiographic Imaging
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ABSTRACT
Electrocardiographic imaging (ECGI) presents a clinical opportunity to noninvasively understand the sources of 
arrhythmias for individual patients. To help increase the effectiveness of ECGI, we provide new ways to visualise 
associated measurement and modelling errors. In this paper, we study source localisation uncertainty in two 
steps: First, we perform Monte Carlo simulations of a simple inverse ECGI source localisation model with error 
sampling to understand the variations in ECGI solutions. Second, we present multiple visualisation techniques, 
including confidence maps, level-sets, and topology-based visualisations, to better understand uncertainty in 
source localization. Our approach offers a new way to study uncertainty in the ECGI pipeline.
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1. Introduction

To rapidly diagnose heart disease, clinicians rely on the electro-
cardiogram (ECG), which records voltages on the torso surface. The 
voltages vary in response to changes in the heart’s electrical 
activity. Although the ECG quickly provides clinicians with informa-
tion on abnormal rhythms or arrhythmias, it cannot reveal localised 
high-resolution spatial information about the heart’s electrical 
impulses.1

For example, in arrhythmias involving added abnormal 
beats, such as premature ventricular contraction (PVC), 
a region of cardiac tissue initiates pathological heartbeats, 
thereby increasing a patient’s risk of sudden death (Messineo  
1989). The lack of high-resolution spatial information from the 
ECG in locating this region is problematic, because one method 
of therapy involves a clinician locating and destroying the 
region through an invasive interventional procedure called 
catheter ablation. A catheter ablation procedure may last sev-
eral hours with a frequently high rate of recurrence of the 
arrhythmia (O’Donnell et al. 2003; Arya et al. 2010).

Electrocardiographic imaging (ECGI) is one promising tech-
nique for increasing the speed and accuracy of ablation ther-
apy. ECGI combines a patient’s computed tomography (CT) and 
magnetic resonance imaging (MRI) images along with the ECG 
to create a functional imaging modality (Johnson 1997; Ghosh 
et al. 2008b; MacLeod et al. 2009; van der Graaf et al. 2014). 
Challenges in ECGI may be categorised as technical (e.g. reg-
ularisation, filtering techniques, and postprocessing methods), 
pathological (i.e. ability to extract features applicable to 
a specific pathology or arrhythmia), and clinical (i.e. benefits 
with respect to daily clinical practice) (Cluitmans et al. 2018). 
Our work addresses both the technical and clinical aspects of 
ECGI, with particular emphasis placed on using visualisation 
techniques to better understand ECGI simulation uncertainty 
and aid in clinical decision-making.

Whereas the ECG may be thought of as a forward problem 
that relates the heart’s electrical activity to the recorded torso 
surface voltages, potential-based ECGI is the corresponding 
inverse problem that relates ECG measurements to heart sur-
face voltages (Johnson 1997; Wang et al. 2011a; Rudy 2013). 
The mapping between the heart surface voltages and torso 
surface voltages may be written mathematically as 

Ahþ e ¼ y; (1) 

where A is a transfer matrix relating the heart surface voltages h 
to the torso surface ECG recordings y. The noise term e is 
modelled as a Gaussian distributed random variable to charac-
terise uncertainties arising from multiple factors, e.g. model 
inaccuracies and sensor errors. The addition of such random 
error provides a more realistic representation of ECG measure-
ments y, and hence, a more realistic representation of inverse 
solutions. In Equation (1), we added Gaussian noise e as 
a percent p of the ground-truth ECG torso surface observations, 
y�, as 

p ¼ 100
k ek2

k y�k2
: (2) 

The forward problem estimates the torso surface potential y 
given h, and the inverse problem estimates h given y.

In recent years, researchers and clinicians have used ECGI to 
study a variety of arrhythmias, including re-entrant pathways 
(Ghosh et al. 2008a) and ectopic heart beats (Wang et al. 2011c). 
ECGI may improve ablation therapy, but researchers do not 
have a good understanding of how small errors arising from 
ECG measurements, geometric approximations from imaging, 
and modelling assumptions for solving the underlying equa-
tions affect source localisation in ECGI. Recent work by Tate 
et al. (2021) on quantifying geometric uncertainty resulting 
from variations in segmentation has shown some correlation 
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between pericardial potential reconstructions and segmenta-
tion variability except in the posterior region of the heart.

Understanding uncertainties relevant to computational 
pipelines is a top research challenge in medical visualisation 
(Karayiannis et al. 2004; Ristovski et al. 2014; Athawale et al.  
2019; Fikal et al. 2019), as well as the visualisation research field 
in general (Johnson and Sanderson 2003; Brodlie et al. 2012). 
Recently, visualisations were proposed by Burton et al. (2013) to 
study uncertainty associated with cardiac forward and inverse 
problems for 3D volumetric data. In our work, we explore new 
techniques to visually analyse and understand the uncertainty 
in epicardial surface data from ECGI simulations.

Building on preliminary work for source localisation by 
France and Johnson (2016), we apply iterative Krylov methods 
with Monte Carlo error propagation to study the impact of ECG 
measurement errors on inverse solutions. We then propose 
a framework for deriving source localisation confidence interval 
(CI) regions, and present applications of level-set and topology- 
based visualisations to visually analyse uncertainty in source 
localisation. We propose that our CI visualisations could pro-
vide a sequential search strategy for clinicians in locating 
pathological heart beats during ablation therapy. Our level- 
set and topology-based visualisations can be useful in perform-
ing qualitative assessment of inverse solutions and extracting 
likely source positions.

We organise our paper as follows: In Section 2, we outline 
the mathematical framework for formulating and solving the 
inverse problem of electrocardiography. Section 3 discusses 
our Monte Carlo propagation strategy for studying the uncer-
tainty of ECGI solutions. Section 4 describes our algorithms for 
developing probability maps and CI regions, as well as applica-
tions of level-set and topology-based techniques, for studying 
uncertainty in source localisation. In Section 5, we show our 
results and discuss their implications. Finally, in Section 6, we 
present a summary and propose future work.

2. Inverse problem of electrocardiography

Here we describe the mathematical model, challenges in sol-
ving the inverse problem, our regularisation algorithms, and 
the simulation setup.

2.1. Mathematical model

The potential-based forward and inverse problems of electro-
cardiography are typically modelled using Laplace’s equation 
(Johnson 1997, 2015; Wang et al. 2011a, 2011b). In our mathe-
matical model, the potential u within a torso is modelled as 
a function of position x as 

Ñ � ðσðxÞÑuðxÞÞ ¼ 0; x 2 Ω (3) 

uðxÞ ¼ h; x 2 ΓH (4) 

~n � σðxÞÑuðxÞ ¼ 0; x 2 ΓT (5) 

where Ω refers to the torso volume, ΓH denotes the epicardial 
surface, and ΓT indicates the torso surface. In this formulation, 
σðxÞ is the electrical conductivity tensor, and ~n refers to the unit 

normal pointing outward from the torso surface, with Equation 
(5) stating no electric flux leaves the body into the air (Johnson  
1997; Wang et al. 2011a, 2011b). Since our main contribution is 
visualising uncertainty, we have implemented a simplified 
inverse model. We note that the visualisation techniques we 
illustrate can be applied to any ECGI pipeline.

Several numerical methods exist for solving Equation (3–5). In 
this study, we used the finite element method to solve Equation 
(3–5) and rearranged the resulting stiffness matrix to form the 
transfer matrix A as described previously in Wang et al. (2011a,  
2011b) and Johnson (1997, 2015) to generate Equation 1.

2.2. Ill-posedness and ill-conditioning

In our study, Equation (1) suffers from the ill-posedness com-
mon to inverse problems. Equation (1) is ill-posed because 
small changes in the observed ECG torso surface recordings 
lead to correspondingly large changes in the reconstructed 
heart surface potentials. In the discrete approximation, matrix 
A is highly ill-conditioned, and the singular values of A decay 
rapidly towards machine precision. Consequently, performing 
inversions using conventional routines greatly amplifies the 
impact of any numerical or measurement errors (Wang et al.  
2011a, 2011b). To overcome the challenges associated with the 
ill-posedness and ill-conditioning, researchers employ regular-
isation (Hansen 2010; Borra`s and Chamorro-Servent 2021). In 
this paper, to increase the speed and scalability for Monte Carlo 
sampling, we used iterative methods to regularise solutions in 
Equation (1), as we describe next.

2.3. Regularisation

In this study, we applied iterative regularisation using the con-
jugate gradient least squares (CGLS) and preconditioned CGLS 
(PCGLS) methods. Milanič et al. (2014) have shown that the 
CGLS method performs as well as the standard Tikhonov meth-
ods in solving the ECG inverse problem with single dipole 
sources, but with the advantage of being computationally 
more efficient.

2.3.1. Conjugate-Gradient Least Squares (CGLS)
The conjugate gradient least squares (CGLS) algorithm seeks 
the regularised solution after k iterations, hk, as demonstrated 
by Hestenes and Stiefel (1952) and Hansen (2010): 

hk ¼ argminh ¼k Ah � yk2 s:t: h 2 Kk (6) 

where Kk represents the kth Krylov subspace, which is for-
mally defined as 

Kk;spanfAT y; AT A
� �

AT y; . . . ; AT A
� �k� 1

AT yg: (7) 

Starting from the zero vector at iteration zero, h0, this algo-
rithm applies one multiplication with A and AT per iteration. 
The solution is formed as a linear combination of the Krylov 
vectors, and it becomes increasingly enriched in the direction 
of the principal eigenvector of AT A (Hansen 2010).
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2.3.2. Preconditioned Conjugate-Gradient Least Squares 
(PCGLS)
We also solved Equation (1) with the preconditioned CGLS 
(PCGLS) algorithm, using the Laplacian operator L over the 
heart surface as the right preconditioner. The matrix L was 
formed as described in Huiskamp and van Oosterom (1988). 
Because L has a nontrivial null-space W, the PCGLS method 
requires formation of the A-weighted pseudo-inverse of L 
(Hansen 2010), 

L# ¼ ðI � WðAWÞyAÞLy; (8) 

where I is the identity matrix. The component of hk that exists 
in the null space of L is given as 

hN ¼ W AWð Þ
y
: (9) 

Then, defining y as 

y ¼ y � AhN ; (10) 

and with �A ¼ AL#, we solved �Az ¼ y for zk using the traditional 
CGLS routine. The PCGLS solution can then be obtained as 

hk ¼ L#zk þ hN : (11) 

As in the CGLS routine, the PCGLS algorithm terminates at 
some iteration to prevent under-regularisation (Hansen 2010).

2.3.3. Choosing the iteration parameter
In choosing the solution at which to stop iterations, we used 
both the norm of the residual and the norm of the solution. In 
using the norm of the residual, we used the Morozov discre-
pancy principle, in which we stopped the iterations as soon as 
the norm of the residual was approximately equal to some 
constant γ times the norm of the noise k ek2, or γ k ek2 

(Kaipio and Somersalo 2004; Hansen 2010). Following the 
example of the study by Calvetti et al. (2015), we used γ ¼ 1:2.

However, as we discuss in our results in Section 5, the 
discrepancy principle may severely under-regularise the solu-
tion when the modelling error is significant relative to the 
measurement error. To address this under-regularisation, we 
used physiologically based mathematical constraints for the 

norm of the solution in limiting the termination iteration k for 
the CGLS and PCGLS algorithms. Specifically, previous studies 
on cardiac electrograms recorded and derived relationships on 
the scalar gain G, between the ,2 norm of the torso and heart 
voltages at a moment in time, or k hk2 � G k yk2.

These studies had an equal number of torso and heart nodes 
(i.e. m ¼ n) (Davenport et al. 1995; Davenport 1995). To account 
for differences in the number of heart and torso nodes in this 
study, we used a slightly modified formula of k hk2 � G k
yk2

ffiffiffi
n
p

and a gain value G of 7.6, a value slightly less than the 
maximum experimentally derived value from the ,2 norm in 
the scalar gain studies (Davenport et al. 1995; Davenport 1995). 
Putting restrictions on the norm of the solution prevents under- 
regularisation, particularly when the modelling error exceeds 
external noise error. Furthermore, slight over-regularisation in 
inverse reconstructions seems to be preferred for clinical appli-
cations as opposed to any form of under-regularisation (Milanič 
et al. 2014).

2.4. Simulation setup

Figure 1 illustrates the heart in torso geometry (left) and the 
250-uniform-ECG-electrode-measurement configuration (right) 
used in this study. Other studies use a similar electrode config-
uration and number of electrodes (Ghosh et al. 2008a; Rudy  
2013).

For this study, we added noise from 0.01% to 3%, values 
similar to those found in other studies (Burnes et al. 2000; Wang 
et al. 2011a, 2011b, 2013). Additionally, we used a different 
transfer matrix A in forming the ground-truth observations y�

compared with the transfer matrix used in inversions to avoid 
so-called ‘inverse crime’, where the solution is biased by using 
the same mesh for forward and inverse simulations (Kaipio and 
Somersalo 2007). For the forward model simulation, we utilised 
a higher resolution finite element model as illustrated in 
Table 1. We use a single stimulation point for our analysis 
throughout the paper. Additionally, for our inverse simulations, 
we added 2 mm Gaussian geometric error to the torso surface 
recording sites, as in other studies (Burnes et al. 2000).

Figure 1. Inversions utilized the heart torso geometry (left) with a 250-uniform-lead configuration (right).
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3. Monte Carlo approach to studying solution 
uncertainty

Having obtained an initial solution hk using the CGLS or PCGLS 
routine, we forward-propagated the solution to form an 
assumed noise-free right-hand side ~y with 

~y ¼ Ahk; (12) 

as described in Aster et al. (2013). To perform Monte Carlo error 
analysis, we sampled a noisy solution ys,Nð~y; σ2IÞ, where σ 
represents the standard deviation of the noise, a value that was 
fixed to produce errors at the same percentage p as in the 
original Equation (1). We then used the CGLS and PCGLS rou-
tines to obtain individual inversion samples, just as we 
obtained hk in originally solving Equation (1) (Aster et al.  
2013; France and Johnson 2016). We obtained an ensemble of 
200 Monte Carlo samples per simulation.

4. Visualising source localization uncertainty

We analysed the uncertainty in source localisation across 200 
Monte Carlo samples per simulation via probability maps, con-
fidence interval regions, level-set visualisations, and topology- 
based visualisations.

4.1. Probability maps

For probabilistic maps, similar to the early study by France and 
Johnson (2016), we located the top 3% of the lowest voltage 
values (with the lowest voltage denoting the source (Wang and 
Rudy 2006)), and averaged these locations over the 200 sam-
ples to form a probabilistic representation for source localisa-
tion. In France and Johnson (2016), probabilistic maps were 
visualised with direct mapping of probability to opacity. In 
our probabilistic map visualisations, we used colour maps to 
segment the regions of high probability ( > 0:75), moderate 
probability (between 0.5 and 0.75/between 0.25 and 0.5), and 
low probability (< 0:25). We propose that the segmented visua-
lisations can potentially benefit clinicians in performing 
sequential searches for source localisation.

4.2. Confidence intervals

Although probability maps represent the probability mass 
function for source localisation, the confidence interval regions 
may be considered as the corresponding cumulative density 
function for source localisation. To generate these visualisa-
tions for confidence intervals, we performed integration of 
the probability maps from the position of the estimated source 
location. First, we determined the estimated source location, 
along with the probability maps. For each node, we assigned 
the confidence interval value at a particular node i, which is the 
value of the sum of the probabilities that reside within the 

radius from the estimated source location to that node i. After 
calculating the confidence interval values at each node, we 
divided the 25%, 50%, and 75% confidence interval regions 
using contour lines via the marching triangles algorithm 
(Hilton and Illingworth 1997). Again, the bands visualised with 
confidence interval visualisations can potentially help clinicians 
perform sequential searches for source localisation.

4.3. Level-set visualizations

We perform level-set visualisations to identify the regions that 
could contain the source of arrhythmia. Level-sets (Lorensen 
and Cline 1987) are a fundamental surface-based visualisation 
technique for gaining insight from complex scientific data. 
Mathematically, for a function f : R ! R defined on 
a d-dimensional manifold, its level-set S for isovalue c is defined 
as S ¼ fx 2 R jfðxÞ ¼ cg. Figure 2b illustrates level-sets of 
a synthetic Ackley function (Ackley 1987) shown in Figure 2a. 
The level-sets in Figure 2b for different isovalues c are displayed 
in different colours. In the ECGI context, function f is a mapping 
from nodes of a mesh representing the heart surface to inverse 
solutions denoting epicardial potentials. We investigate level- 
sets with relatively low isovalues to understand potential posi-
tions of arrhythmia.

We guide our selection of an isovalue for level-set visualisa-
tions using parallel coordinate (Inselberg 1985) and histogram 
plots. Parallel coordinate plots are a well-known visualisation 
technique to study correlation among dimensions of multivari-
ate data. For our analysis, in the parallel coordinate plot, we 
treat each node of a mesh representing the heart surface as 
a single dimension of a parallel coordinate plot. We then plot 
the potentials across all nodes and 200 samples. Likewise, in the 
histogram plot, cardiac potentials across all nodes and 200 
samples are grouped into bins. We then use these plots to 
gain insight into the relatively low potential values that are 
observed across all samples. We pick one of the low potential 
values as the isovalue for level-set rendering. Level-sets with 
relatively low isovalues help us extract regions that correspond 
to a potential source (Wang and Rudy 2006). Finally, we visua-
lise isocontours for the selected isovalue using spaghetti plots 
(Potter et al. 2009) and isocontour variation plots (Whitaker 
et al. 2013).

4.4. Topology-based visualizations

Topological data analysis is a powerful tool for understanding 
complex simulation datasets (Miller et al. 2006; Bremer et al.  
2010). We propose visualisations of topological abstractions, 
specifically, critical points and Morse complexes (Edelsbrunner 
et al. 2001), of CGLS and PCGLS inverse solutions to gain insight 
into the likely source positions and their variations. Let function 
f : R ! R be defined on a d-dimensional manifold, and let Ñf 
denote its gradient field. A point x on a manifold is considered 
critical if Ñf ¼ 0. Given a Morse function f defined on 
a d-dimensional manifold, i.e, a function with no flat regions, 
the Morse complex of f decomposes the manifold into regions 
(referred to as cells) with uniform gradient behaviour. Figure 2c 
illustrates the Morse complex segmentation of the Ackley func-
tion shown in Figure 2a. In Figure 2c, nine Morse complex cells 

Table 1. Forward and inverse model resolution.

Number of Attributes Forward Model Inverse Model

elements 128,898 75,605
heart nodes 3,573 2,206
torso nodes 7,328 4,754
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correspond to nine critical points of (local maxima) of the 
Ackley function. In our case, the Morse complexes segment 
the heart surface into cells, where gradients within a single 
cell terminate in a single local minimum associated with a cell 
(also known as an ascending manifold). Thus, local minima of 
ECGI solutions provide insight into the positions that have the 
smallest potential within their local neighbourhood (repre-
sented by the Morse complex cell), thus indicating potential 
source positions.

5. Results and discussions

We now present results for each visualisation technique 
described in Section 4 to understand the source localisation 
uncertainty.

5.1. Probability and confidence maps

We first present the uncertainty visualisation results using prob-
ability maps and our proposed confidence maps in Figure 3. 
Figure 3a visualises the ground-truth heart surface voltages (in 
mV). In all plots, the white dot indicates the position of the 
ground-truth source. Figures 3(b,c) visualise the CGLS and 
PCGLS inverse solutions at 1.5% external noise for a single 
Monte Carlo sample.

Figures 3(b,c) illustrate the challenges in obtaining inverse 
solutions in ECGI, i.e. the reconstructed voltages in Figures 3(b, 
c) differ significantly in both range and magnitude in compar-
ison to the ground-truth, Figure 3a. This difference is evidence 
of the significant ill-conditioned nature of discrete ECGI pro-
blems, as discussed in Section 2.2. Inversions in Figure 3(b,c) 
were performed with the lower resolution ‘Inverse Model’ mesh 

Figure 2. Illustration of level-sets in image (b) and Morse complexes in image (c) for the synthetic Ackley function f depicted in image (a). Level-sets are visualized for 
different isovalues c. The Morse complex visualization denotes nine cells (a single cell highlighted in green) corresponding to nine critical points (local maxima 
indicated by red dots) of the Ackley function. Gradients within a single cell flow to its corresponding critical point.

Figure 3. Uncertainty analysis of Monte Carlo simulations with probabilistic and confidence maps: (a) the ground-truth voltages, (b,c) the CGLS and PCGLS inversions 
for a single Monte Carlo sample at 1.5% external noise, (d,e) probabilistic maps, (f,g) confidence maps. The white dots denote the true source positions, whereas the 
yellow dots in (b,c) denote the estimated source positions. The results (a-c) are colormapped with the potential values, the results (d,e) are colormapped with the 
probabilities, and the results (f,g) are colormapped with the confidence values.
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in Table 1, and with additive 2 mm Gaussian geometric error on 
the heart surface, as described in Section 2. The yellow dot in 
Figure 3(b,c) indicates the estimated source location for each 
individual visualisation. This yellow dot corresponds to the 
global minima of the reconstructed epicardial potentials.

Figures 3(d,e) and Figure 3(f,g) illustrate the probability 
maps (France and Johnson 2016) and confidence maps, respec-
tively. For the probability maps visualised in Figure 3(d,e), the 
darker green areas indicate the regions of higher probability for 
source localisation. In the confidence maps visualised in 
Figure 3(f–g), the contour lines separate the 25% (orange), 
50% (yellow), and 75% (light green) CI regions for source loca-
lisation. Specifically, in the orange regions, our model states 
that the probability of finding the source is less than or equal to 
25%. Likewise, the probability of finding the source in the 
combined orange and yellow regions is less than or equal to 
50%. Note the lack of symmetry around the sites of stimulation, 
which is due to the coarseness of the grid and its unstructured 
nature.

The green region representing the high source localisation 
probability in probabilistic maps (Figure 3(d,e)) still covers 
a relatively large surface area. The CI visualisations could pro-
vide clinicians with an improved sequential search strategy for 
planning ablation therapy. For example, during an ablation 
procedure, a clinician might sequentially search the 25%, 
50%, and 75% CI regions to locate the source of cardiac tissue 
responsible for spontaneous pathological heart beats or re- 
entrant wave activity.

The vertex positions of confidence/probability map con-
tours can be utilised to quantify the positional uncertainty of 
source localisation. For example, in Figure 3g, the maximum 
Euclidean distance between contour vertices for the 25% 
confidence interval is 8.56 mm. The error in source localisa-
tion, thus, may not exceed 8.56 mm, assuming that the 25% 
confidence region is locally planar and the source resides in 
the 25% confidence region. More advanced techniques of 
error quantification may be developed in the future that 
take into account contour vertex positions and heart surface 
curvature.

Figure 4 illustrates probability maps for the CGLS and PCGLS 
routines at various external noise levels, as defined in Equation 
(2). In both algorithms, the probability tended to aggregate 
around the ground-truth source location until approximately 
3% external noise. Figure 5 illustrates the corresponding CI 
regions for the CGLS and PCGLS routines. For the CGLS and 
PCGLS routines, the ground-truth source location fell within the 
50% CI region (yellow) and 25% CI region (orange), respectively, 
for all noise levels.

Figure 6 illustrates the convergence of the CGLS routine at 
0.5% and 2.5% external noise levels, both with and without 
modelling error using the CGLS algorithm. Although not 
shown, PCGLS gives similar results. At 0.5% external noise 
(Figure 6, left), the norm of the residual approaches the norm 
of the noise after 20 iterations to satisfy the Morozov discre-
pancy principle. However, in the presence of modelling error in 
the transfer matrix A (from a coarser mesh resolution and torso 
surface electrode position errors, as described in Section 2), the 
CGLS residual does not converge to the norm of the external 
noise, even after several hundred iterations (not shown). At 
2.5% noise, however (Figure 6, right), the convergence patterns 
of CGLS on transfer matrices with and without modelling error 
follow a nearly identical pattern. Figure 6 (left) illustrates the 
need to also use the norm of the solution as a constraint to 
prevent under-regularisation, especially when the ratio of mod-
elling error to external error is large. Other studies also report 
difficulties in regularisation when modelling error exceeds 
measurement error (Johnston and Gulrajani 2002).

5.2. Level-set visualizations

Next, we study the source localisation uncertainty by extracting 
level-sets of epicardial potentials, in which we guide the iso-
value selection with parallel coordinate plots and histograms. 
Figure 7 shows a parallel coordinates plot (left) and a histogram 
(right) plot of the 200 samples denoting the epicardial voltage 
recordings at each of the 337 heart nodes represented at the 
0.5% noise level. A parallel coordinate plot has the advantage 
of not losing spatial context as opposed to a histogram. These 

Figure 4. Probability maps for source localization illustrate uncertainty as a function of noise in ECG observations for the CGLS inversion (top row) and PCGLS inversion 
using a Laplacian preconditioner (bottom row). White dots mark the ground-truth source location.
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Figure 5. Confidence interval (CI) regions for source localization illustrate uncertainty as a function of external noise in ECG observations for the CGLS inversion (top 
row) and PCGLS inversion using a Laplacian preconditioner (bottom row). Dots mark the ground-truth source location. Contour lines separate the 25%, 50%, and 75% 
CI regions.

Figure 6. At 0.5% external noise (left), modeling error affects convergence, whereas at 2.5% external noise (right), convergence appears similar both with and without 
modeling error. For both plots, the dashed line indicates the Morozov discrepancy principle termination criterion.

Figure 7. Parallel coordinate (left) and histogram (right) plots of heart surface voltage recordings from 200 Monte Carlo samples at the 0.5% noise level. The dotted 
lines indicate our isovalue selection (−6.5mv) for level-set rendering.
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Figure 8. Isocontour maps for sample isovalue ¼ � 6:5 mV showing the ground-truth isocontours (purple) overlaid with isocontours (black) from the 200 samples. The 
top row shows isocontours without any smoothing (i.E., CGLS) whereas the bottom row shows isocontours with Laplacian smoothing applied (i.E., PCGLS). The columns 
indicate different noise levels. Dots mark the ground-truth source location.

Figure 9. Isocontour maps for sample isovalue ¼ � 6:5 mV showing the ground-truth isocontours (purple) overlaid with the minimum (white), maximum (red), and 
average (yellow) isocontours from the 200 samples at each noise level. The top row shows isocontours without any smoothing (i.E., CGLS) whereas the bottom row 
shows isocontours with Laplacian smoothing applied (i.E., PCGLS). The columns indicate different noise levels.
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plots were useful in the visualisation and selection of the low- 
magnitude heart surface voltages corresponding to the 
sources, as described in Section 4. We used these plots in 
choosing the isovalue −6.5 mV.

Figure 8 shows a spaghetti plot of level-set renderings for 
the isovalue −6.5 mV across different noise levels. As can be 
observed, the ground-truth source location fell within the con-
fines of level-sets for all noise levels. Thus, the region repre-
sented by the outermost level-set of a spaghetti plot denotes 
the likely existence of a source location. In Figure 8, the iso-
contour shape for the PCGLS solutions (bottom row) appears 
more closely aligned with the ground-truth isocontour (purple) 
shape when compared to the shape of the CGLS isocontours 
(top row).

We visualise an isocontour variation plot to reduce the clutter 
caused by spaghetti plots. Figure 9 visualises the variations 
corresponding to the spaghetti plots shown in Figure 8. 
Figure 9 may be easier to analyse and provides a less cluttered 
visualisation because the 200 samples are summarised by the 
minimum (white), maximum (red), and average (yellow) isocon-
tours overlaid on the ground-truth (purple). The minimum iso-
contour refers to the isocontour generated by using the 
minimum value from the reconstructed voltage potentials across 
all simulations. Likewise, the maximum isocontour refers to the 
isocontour generated by using the maximum value from the 
reconstructed voltage potentials, and the average isocontour 
refers to the isocontour generated by using the average value 
from the reconstructed voltage potentials. These isocontours are 
then overlaid on the ground-truth. This approach significantly 
reduces clutter while clearly showing the variation, and there-
fore, uncertainty, contained in the reconstructed solutions.

5.3. Topology-based visualizations

Lastly, we analyse the source uncertainty via visualisation of 
critical points and Morse complexes derived from ECGI 

solutions. Figure 10a visualises the critical points (spheres) 
and Morse complex (white contours) for the ground-truth. 
Similar visualisations are produced for the CGLS (Figure 10b) 
and PCGLS (Figure 10c) solutions for the 1% noise level and 
a single sample. The visualisations are performed in ParaView 
(Ayachit 2015) using the topology toolkit (Tierny et al. 2018). 
The local minima of all three fields are visualised with the dark 
blue spheres, and the local maxima are visualised with the 
orange spheres. As indicated in Figure 9b, there are two local 
minima (enclosed by yellow dotted boxes), indicating uncer-
tainty in source positions. However, this uncertainty can be 
further reduced by employing better regularisation schemes, 
e.g. PCGLS, as shown in Figure 10c. Even though Figure 10 
visualises critical points for the sample 50, a similar trend is 
observed across all simulations.

6. Conclusion and future work

In this paper, we use multiple visualisation techniques, several 
of which are new to ECGI applications, to study the impact of 
measurement and modelling errors associated with the ECGI 
pipeline on epicardial source localisation. Specifically, we pre-
sent applications of confidence maps, level-sets, and topology- 
based visualisations for effective analysis of uncertainty in 
source localisation. In the future, we would like to study the 
sensitivity of source localisation to variations in other ECGI 
parameters, such as electrical conductivity and number and 
configuration of ECG leads. We would also like to study and 
visualise uncertainties arising from multiple sources and add 
a quantitative metric to our probability maps and confidence 
maps to reflect the multiple localisation errors resulting from 
multiple pacing site estimations. The analysis for multiple 
sources would require additional research into more sophisti-
cated statistical models and uncertainty visualisations and 
would be an interesting extension of the methods presented 
here. Lastly, we would like to study how the different 

Figure 10. Visualization of Morse complexes and critical points for (a) ground-truth, (b) CGLS at 1% noise, and (c) PCGLS at 1% noise. The white contours denote the 
Morse complex cells, the dark blue spheres denote the local minima associated with each Morse complex cell, and the orange spheres denote local maxima of 
respective fields. The potential values are colormapped on the heart surface. The local minimum enclosed by the bottom yellow box in the CGLS visualization is situated 
closer (6.55 mm) to the true solution, indicated by the yellow box in the ground-truth, when compared to the PCGLS solution (7.72 mm).
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visualisation methods we presented compare under different 
arrhythmia scenarios.
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